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Abstract

The Brownian equations of motion for the small-gradient approximation of the Helfrich energy are
derived. We begin from first principles via low Reynolds number hydrodynamics (Stokes equations)
applied to colloid particle suspensions and then adapt the result to fluid membranes. This treatment
very closely follows the presentation in chapter 3 of Doi and Edwards’s The Theory of Polymer
Dynamics [3] in order to derive the methods of Lin and Brown’s 2004 Phys. Rev. Lett. [4]. For
alternative derivations and related models, see [1] and [5].

1 Hydrodynamic Interactions Between Colloid Particles

1.1 Governing Equations

Suppose N point-like Brownian particles which move with their surrounding fluid have locations R,
and are each subject to an external force F,,. These applied forces and resulting particle motion induce
motion in the surrounding fluid which couples all of their dynamics. We seek an expression for the
velocity field v(r) of the fluid in terms of the forces and positions. We do this under the assumptions of
fluid incompressibility

V-v=0 (1)

and negligible fluid inertia, which means ignoring the Dv/Dt term in the Navier-Stokes equations, leaving

us with
V.o+f=0, (2)

where o is the local stress tensor and f is the local external force per unit volume. In words, this says
that the fluid is always in local mechanical equilibrium; any forces f applied are immediately balanced
by the internal fluid stress o. The usual constitutive equation for an incompressible Newtonian fluid
relates stress to strain-rate in the form

o=n(Vv+(Vv)) - PL (3)

in which 7 is the (dynamic) viscosity and P the bulk pressure. The quantity & = (Vv+(Vv)T)/2 is known
as the strain-rate tensor, which allows eqn. (3) to be written much more compactly as o = 2ne — PI.
Taking the divergence of eqn. (3) gives

V-0 =nV3v+qyV-(Vv) —VP.
The second term is zero due to eqn. (1), which is easiest seen in component form:

(V-(VV)"),, = 080avs = 0a0pvs = (V( =0.

V.9
=0

Combined with eqn. (2), this brings us to

gV - VP +f=0] (4)

Equations (1) and (4) together are known as the Stokes equations of motion for an incompressible
Newtonian fluid. Our goal is now to solve this PDE for the velocity field v, given some f. We can then
also compute the resulting pressure field P if so desired (up to an additive constant, since P only enters
as VP).



1.2 Solution via Fourier Transform

We define our 3-dimensional Fourier Transform as
fio = [ av e e

Applying this to eqns. (1) and (4) we get
ik-v =0, (5)
—nk*v —ikP +f =0. (6)
Rearranging the last equation, we have

V:n%(ffikﬁ).

Equation (5) tells us that v(k) is orthogonal to k, so it must be that f cancels the pressure contribution.
To show this explicitly, we dot the above with k and find

1
G k:—(f-k—uﬁp)
nk?
1~ ~ =
- —f.k—-P=0
nk n
1.~ -
ik

Plugging this back into our equation for v gives

~ 1 /= . 1~ - 1/~ o~ =
v_nkz<f—zk<ikk-f>)_nk2(f—k(k-f)),
and so we find the neat result

g = # (11 - RRT) f. (7)

We must now invert the Fourier transform to get our real-space result v(r),
v(r) = ! /d3k v(k)e'kT
(2m)
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v(r) = /H(r —r)f(r')dV’ (8)

wherein the last line we have implicitly defined the Fourier representation of the Oseen Tensor H:

1 1 LT ik-r
HE) = oo /d?’kﬁ (]1— ki )e , (9)

which is the Green’s function for the velocity field of Stokes flow in an unbounded domain.

1.3 The Oseen Tensor

The evaluation of eqn. (9) is made less painful by recognizing that the form of H(r) is restricted by

symmetries (see aside box). Rather than trying to attack eqn. (9) head-on, we can try to figure out a(r)

and b(r) in eqn. (10) by looking at two scalars that we can calculate from both representations of H.
The trace of H is, according to eqn. (10),

Tr(H) = hao = 3a(r) + b(r). (11)



Aside: Symmetries Restrict the Form of H

The Oseen tensor H = H(r) depends only on r, and as a geometric object knows about nothing
else. Without loss of generality, let us define our (Cartesian) coordinate system such that & = Z.
Each component of H is h;; = h;j(r) since r = rz. The complete matrix representation is

hit hiz his
H= | ho1 hos hos
hz1  hsa  hsz

The matrix must be identical in bases which are related via operations that leave r unchanged
(symmetries).
Rotate by 7/2 about Z:

hir hiz his haa  —ha1  —has
H=Rz HR; © ho1 ho2 hes | = | —hiz  hii  his
hs1  haa hssz —h3a  h3r  hss

=> hiz = haz3 = h31 = h3a =0, hig = —ha1, hor =hyy

hiit hiz O
— H= —h12 hu 0
0 0 hs3
Reflect + — —x :
hiit  hiz O hiin —hiz O
H= R_a;HR_a; <~ 7h12 h11 0 = h12 hll 0
0 0 h33 0 0 h33
= hip2 =0
So,
hiin 0 0 a 0 0
H=[0 hy 0 |=(0a 0 |=al+bz2"
0 0 hss 0 0 a+bd
H(r) = a(r)l + b(r)f‘f‘—r (10)

We can also calculate the trace as

— 1 3 i LT ik-r
Tr(H)Tr(87T3n/d ko (11 kk )e )
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At this point we can try to look up the result in a table of Fourier transforms or be brave and compute
the integral in spherical k coordinates with the polar axis along #. Thus d*k = k?sin 6 dkdf d¢ and we

have

™ 2

1 T . ikr cos 6 1 T [ . ikr cos 6
Tr(H) = 47r377/dk/d9/d¢sm96 = 27T2n/dk/d981ﬂ96
0 0 0 0 0
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Once again changing to spherical coordinates,

s} i oo 1
p o 1 .
n /dk/d9 sin 6 (1 — cos? 9) gikreost — /dk/du (1 — u2) etk
83 472n
0 0 0 21

The first term is the same as one of the integrals we computed above, and the second term integrates to
zero after some (read: much) tedium. So, the result is

FTHE =

1
dmnr’

#THE =

Thus we have

1 1
3a+b=—— and a+b=
2mnr dmnr
1
— alr) =b0) =

and together with eqn. (10), we can finally write down the Oseen Tensor in real space.

H(r) (I+887) (12)

- 8mnr

1.4 Putting it All Together

For forces applied to point particles located at R,,, the external force density f is

N
f(r) =) F.8°@r-R,). (13)

By inserting this into eqn. (8), we get the nicely compact solution:

N N
v@):1/Fﬂr7r@§:F%5%rth%ﬁﬂﬂ:ZE:FKP*IhJFn- (14)

There is still one outstanding issue: v(r) diverges whenever r — R,,. This arises out of our choosing to
model our particles as infinitesimal points rather than spheres of finite radius. This is rather unfortunate
though, since the velocities of the colloid particles located at r = R,, are the main point of interest here.
To avoid this, Doi and Edwards suggest an approximation based on Stokes’s Law. The steady velocity
of an isolated spherical particle of finite radius a subject to a force F (or, equivalently, the viscous drag
force on a stationary sphere immersed in a far-field flow v) can actually be solved exactly from eqns. (1)

and (4), the result being
F I
6mma ¢
defining ¢ = 6mna. This result is known as Stokes’s Law. Based on this, it is suggested that when
calculating the velocity V,, of a particle located at R,,,

NE

n=1



Ivl pm/s
8.0
6.4
4.8
3.2
1.6
0.0

Figure 1: Plot of the velocity field v(r) around a particle subject to a force F = (1pN)§y as calculated
from eqn. (14). Arrows depict ¥, color indicates speed v = |v|. The dashed red curve indicates the
contour v = F/6mna, the particle speed predicted from Stokes’s Law. The outermost extent of this
contour may serve as a reasonable cutoff beyond which the point-particle approximation can be trusted.
Particle radius @ = 100 nm and the plotted region measures lym x lym. The viscosity 1 = 6 centipoise,
roughly the viscosity of cytosol (a bit more viscous than pure water ~ 1 cP).

one can replace the divergent H(0) in the n = m term by I/{ as a reasonable approximation. This can
then be seen as a lowest-order correction to Stokes’s law accounting for the presence of other particles,
by treating them as point-like.

Figure 1 shows a plot of the velocity field v(r) around a single particle subject to a force in the positive
¥ direction as calculated from our point-particle solution eqn. (14). To get an idea for what distance can
be considered “far enough” away from the particle for the point approximation to be acceptable, Fig. 1
also plots a dashed red curve indicating the locations at which the magnitude of v(r) is equal to the
speed from Stokes’s law, eqn. (15), which can be solved in closed form in polar coordinates,

1 F
I+¢¢") Fy| =
87r177“( i ) Y 67na
L |sin6€os€5<+ (1 + sin® 0)y| - 1
4r 3a

= r(0) = Za,\/sin2 6 cos? 0 + (1 +sin” §)2.

This depends only on the particle radius a, and has maxima of r = 3a/2 at § = +m/2, suggesting that
we might trust the result for r > 3a/2.

2 Small-Gradient Helfrich Dynamics

2.1 Real Space

The Helfrich energy functional for a membrane (represented as a 2-dimensional surface M) with no
spontaneous curvature and constant tension o is!

E*M] = /dA{%/-@K2+RKG+a}. (17)

k and K are the curvature and Gaussian moduli, respectively, and they predictably multiply the curvature
K and Gaussian curvature Kg. We will assume that the membrane has no boundary and undergoes
no topological changes; therefore we can discard the integral of K¢ since it does not change due to the
Gauss-Bonnet theorem. We will also confine our interest to membranes which are nearly flat, such that

T apologize for re-using the letter o. Bold o was the stress tensor above, normal ¢ here will be membrane tension.



|[Vh| < 1, with h(z,y) being the height function describing our membrane shape (the so-called Monge
gauge). In this case, dA = dzdy\/1 + (Vh)? ~ dzdy(1 + 3(Vh)?) and K ~ V2h. Discarding a constant
term we are left with the lowest order approximation

E* M) ~ E[h] = /dmdy {;m(v%)? + ;a(Vh)2} . (18)
RZ

The local force per unit area in the Z direction (since we only allow the Z degree of freedom h to vary)
for a given shape h(x,y) is given by the functional derivative of this energy,?

Flx,y) = —%(m, y) = oV2h — kVh. (19)

In accordance with the small gradient approximation, we consider the net tangential forces to be negli-
gible. With no other forces acting, we can write the force per unit volume in the entire medium as

f(r) = F(z,y)d(z — h(x,y))z. (20)

Once again, we are considering membranes which are very nearly flat, so we will further approximate
this as f(r) ~ F(z,y)d(z) to simplify our next calculation. In the following, I will use r to denote a
3-dimensional position vector and p to denote a position vector restricted to the xy-plane. Appealing to
eqn. (8), we can say that the local membrane velocity in the Z direction is

Oh(p)=2-v(ip+h(p)z)~z-v(p)=2- / H(p — r")f(x") dz'dy’d2’
~7- / H(p — ') F(2',y")6(z" )z dz'dy' dz’
=7 / H(p — p')F(z',y)zdx'dy’

~ 1 o (p_p/)(p_pl)'2> ’o 110
—3. Z+ F(z',y')da'dy’.
/87rn|p—p’|< lp—p'|? @9

Since (p — p') - 2 = 0, we immediately have

1
d:h(p) :/&TW)_M}_(P/)dxldy/ (21)

R2

Thus, the non-local hydrodynamic interactions couple the motion of each point to the force on all other
points on the membrane (instantaneously, in the Stokes approximation).

2.2 Fourier Space

Having to calculate an integral over the entire membrane for every point we propagate forward in time is
less than ideal. Looking back at eqn. (7), we can see that in Fourier space, V(k) can be calculated from
f(k) without a convolution over all k modes. Of course, that’s assuming we already know the Fourier
transform of the forces. Let’s derive the equivalent expression for our membrane equation of motion.
From this point onward, we will restrict our consideration to a finite square patch of membrane over
a domain with side length L. This is for two main reasons: (1) the statistical mechanics of continuous
fields is a very tricky business which is made conceptually simpler by periodicity, as it allows us to work
with a discrete basis of Fourier modes k = 2% (nX 4+ my) and (2) the ulterior motive this whole time has
been to derive a membrane simulation algorithm which will necessarily be applied to systems with finite
size (and resolution). With this in mind, we write our height and normal force per unit area as Fourier

series,

h(r,t) = % > he(t)e™*T, F(r,t) = % > FAelt)e™r. (22)
k k

2If one wants all the membrane force components for an arbitrary shape, they can be found by calculating the divergence
of the membrane stress tensor, requiring a much more involved functional variation procedure, see [2].



Plugging these expressions into eqn. (21) and simplifying, we find

- 1 do’dy’ |1 ik’
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Where we have once again defined an Oseen parameter
1 dedy _j;. 1 T ik g x 2m T 1
Ay=— [ —eT"=— [df [ dre """ Jo(kr)dr = —-.
k 87r77/ r 87r77/ / e 877 olkr) 477k
R2 0 0 0
At the * i

we made use of an integral representation of the n = 0 Bessel function of the first kind [6]

2

1 .
JO(Z) —_ %/ezzcosedel
0

The equations of motion in Fourier space are beautifully simple, but it gets even better when we write the

membrane forces in eqn. (19) in Fourier representation. For this we need the Laplacian and bi-Laplacian
of the membrane height, which are easy to compute in Fourier space

_ 1 . ik-r 2 _ 2 ik-r
h(r,t) = I Ek ihk (t)ke* V<h =—— E k“hy(t)e’
. 1 . .
3 o 21,2 ik-r 4 _ 4 ik-r
Veh(r,t) = I Ek ik“hy (t)ke Veh(r,t) = Z Ek kE*hy(t)e
Thus, we have

_ 2 47 4 2 7.kr_ zk~r
F(r,t) =oV2h — kV h——z 3 (kk* + ok?) _Lka

—> | Fic = —(vk* + 0 k)|

(24)
Our equation of motion iy (t)

— Ay (kk* + 0k®)hy(t) is thus a simple first-order linear system, so the
relaxation in response to an instantaneous perturbation at time ¢ = 0 is exponential

hEF(t) _ e—Ak(Hk‘4+0k2)t@(t)_

(25)
This is the temporal Green’s function, and from it we can immediately read off the characteristic relax-
ation time 75, = 1/Ay(kk* + 0k?) for a given membrane undulation mode
4n
’7— =
MRk + ok

(26)



2.3 Stochastic Dynamics: Fluctuation-Dissipation Theorem

So far, all of the equations have been fully deterministic. This may be reasonable for simulations on
sufficiently large length scales (provided one is still in the small Reynolds number regime), but for our
systems of interest, namely cellular and sub-cellular scale biomembrane dynamics, we should not neglect
the influence of thermal fluctuations. We model the interaction of our membrane with a thermal reservoir
through the addition of a stochastic fluctuating force on the membrane. That is, we now have

oFE

Flrt) = =2 (r,1)

+&(r,t),

where {(r,t) is the random force satisfying the appropriate fluctuation-dissipation theorem. It turns out
that, once again, things are easier in Fourier space. As we worked out above, hy = AxFi. With our
stochastic force this is now

hie(t) = — A (kk* + 0k?)hie(t) + A (t).

We can construct the solution for a time-dependent source, such as our noise term Axk(t), via convolu-
tion with the Green’s function eqn. (25):

hae(t) = / dt'hCF (¢ ) Ag&u(t — ') = / At/ e AR ok N 6 (4 ¢, (27)
0o 0

Our strategy now is to calculate the power spectrum (|hy|?) according to this solution and then compare
it with the result of the equipartition theorem. We will assume the following properties for our noise &,

(&i, (11)8k, (t2)) = C(k)dk, k,6(t1 — t2), (29)

where C'(k) is an as yet unknown function. The Kronecker delta is there because the modes propagate
independently in Fourier space and thus have independent noise, and the Dirac delta means that the
fluctuations are so-called white noise. Strictly speaking, this last part is not essential, but the time
correlation should decay much faster than the timescale of the deterministic dynamics in order for the
following calculations to remain approximately valid. The undulation power spectrum is then

() = (1) (1)) = </ N A R t2>>
0 0

- / dt, / dty e~ MR RN OAINZ (6 (1) (t — 1))

[t [[atpe e ot - 1)
0 0

k)Ai/dtl e—Ak(r@k4+0k2)2t1
0

= O (g o)

L

2(kk* + ok?) (30)

This is the first half of what we need. Next, we write the small gradient Helfrich energy eqn. (18) for
the principal [0, L] x [0, L] patch (so that the energy is finite) in our Fourier basis with the help of the
derivatives we computed before,

2 2
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E= / dady § 5x (—sz:k hie ) +50 (sz:zhkke )
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wherein the last line we used h_x = hj, which follows from requiring h(r,t) € R. The equipartition
theorem then immediately yields the famous membrane undulation spectrum,

1, 1 ., o\ 1 o kT
<(2I€k +20'k )|hk >— 2/€BT — <|hk| >— ok (31)
Equating this with our result above, we have
C(k)A ksT
UMk hs —  C(k) = 20 YkpT = 8nk kpT. (32)

2(kk* + ok?)  Kk* 4+ ok?

This is the fluctuation-dissipation relation we need. It relates the variance of the equilibrium thermal
fluctuations, C(k), to the dissipation arising from the fluid viscosity 7. From this we get the power
spectrum for our fluctuating force:

(6lt)6i(12)) = 220t — 1) = SuhaT (1 — t2) (3)

3 Numerical Simulation

3.1 Finite Timestep Noise

The transformation of the equation of motion eqn. (23) into a finite-timestep numerical algorithm is
straightforward, save for the noise term. That is, we need to turn our fluctuation power spectrum
eqn. (33) into a random displacement in a finite interval At. Let us start by integrating the fluctuation
term over this interval,?

At
Rk(At) = /Akgkdt.
0

Since (&) = 0, the variance of this term is just

At At At At

(IRy[?) =AY / dty / dta (€ (t1)€k(t2)) = 2kpT Ak / dty / dtad(t; — to) = 2kpTAKAL.  (34)
0 0 0 0

But, we must keep in mind that Ry is complex-valued, so Rx = ayx + ibx, with a and b real. These
are each taken to be i.i.d. random variables with variance kT AxAt (except for pure real modes, see
below), such that their sum gives the total variance (|ay + ibi|?) = (a2) + (b2) = 2kpT A At as above.
Assuming that this random displacement is due to a constant barrage of particles in the surrounding
medium, and given the finite variance of the displacement distribution, we may conclude by the Central
Limit Theorem that these random variables should be Gaussian, and thus are now fully specified.

3Since the prefactor of the fluctuation does not depend on the current value of the random walk hy, we need not worry
about Ité vs. Stratonovich integration here; they yield the same result.
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Figure 2: Diagram of independent complex and pure real modes. Each square represents one of the N2
(depicted here for N = 6) Fourier modes corresponding to a particular k vector. The grey circle indicates
the zero mode k = 0. White squares are modes chosen to be independent complex degrees of freedom (2
real degrees of freedom). Red squares indicate modes which are fully determined by the corresponding
—k mode, due to the condition that h_ix = hy;. Blue modes are pure real degrees of freedom due to —k
coinciding with k in the first Brillouin zone (as exemplified in the diagram on the right). Adding up
the number of independent real degrees of freedom in Fourier space then gives 4 + (2 x 16) = 36 = N2,
exactly matching the real-space representation.

3.2 Mode Counting

We will work with a computer implementation where we keep track of the real-space positions h(z,y) € R
subject to periodic boundary conditions on a discrete square lattice with spacing a = L/N (that is,
r, =na/L,n=0,1,...,N — 1, and the same for y). We then evidently have, in total, N2 real degrees
of freedom that can vary in our simulation. Our Fourier series representation of h in eqn. (22) sums
over k = %(nf{ + my). To guarantee that h is real in this representation, we sum over both positive
and negative values of n and m (the imaginary part of h_y cancels that of hy). The existence of our
discrete lattice length a means that we have an upper bound on k-vector components. This also means
that components larger than 7/a “wrap back around” to the other half of the first Brillouin zone.

The combination of the condition of realness and the periodicity of k-space gives rise to some odd
subtleties in how simulations must be propagated. Fig. 2 shows a diagram of independent real and
complex modes in our discrete, finite k-space. Independent thermal noise should only be applied to hy
variables which are independent, with the dependent h_j modes being assigned the complex conjugate
value. Pure real modes (blue in Fig. 2) must still satisfy eqn. (34), meaning the noise term must have
twice the variance of the constituent real components of a complex mode. An unfortunate fact is that the
independent/dependent mode bookkeeping is simpler for odd N, but discrete FFT codes are universally
more efficient for even N.
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